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ABSTRACT

Due to global warming, Arctic sea ice is now declining, and this loss
is a self-accelerating process that speeds up sea ice melting and the
severity of climate change. Accurate and timely sea ice information
is critically important for better monitoring of global climate. Pub-
licly available multi-source, multi-scale, and high-dimensional sea
ice data from satellites is a game changer that allows researchers
to better understand the Arctic through more sophisticated meth-
ods. This study proposes two Long short-term memory (LSTM)
networks for sea ice concentration (SIC) forecasting in the arctic
area over 1-, 3-, 6-, and 9-month forecast horizons. The first net-
work forecasts the SIC of each grid in a single output with the
grid coordinate must be supplied as an additional input, while the
second network forecasts the SIC of all grids at once in a single
output. The models with and without atmospheric and oceanic vari-
ables as external predictors were trained by using 43 years of data
and tuned by using random search strategies. The model perfor-
mance was evaluated and compared based on the root mean square
errors and weighted absolute percentage errors to determine the
impact of using climate variables in the prediction and arrive at the
best-performing forecast model.
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1 INTRODUCTION

Even though the Arctic is unreachable to most people, sea ice in
the Arctic is a key part of life support systems on the Earth and
humans depend on it for many reasons. For instance, Arctic sea ice
acts as a huge white surface reflecting most of the Sun’s radiation
into space which helps keep the planet’s climate in balance. The
melting of ice will release significant amounts of carbon dioxide
stored in the form of permafrost into the atmosphere. Sea ice also
controls the movement of ocean currents to globally regulate the
ocean temperature and is beneficial for indigenous communities
and native wildlife by protecting shorelines and providing ice for
hunting. However, Arctic sea ice has been shrinking over 40 years
[1], from nearly 6.90 million km? in 1979 to about 4.72 million km?
in 2021. The decreased sea ice exacerbates global warming by re-
inforcing the ice to melt faster. Massive loss of sea ice is going to
force people and animals to be in more endangered situations. A
common metric to measure sea ice is the Sea Ice Concentration
(SIC), which indicates the density of the sea ice in space and ranges
0-1 or 0%-100%, corresponding to ice-free to full-ice conditions.
SIC data is currently available from remote sensing satellites. Ac-
curate forecasting of SIC allows for better monitoring of global
climate, management of ocean and coastal resources, and security
of indigenous communities and biodiversity in the Arctic.

Various models have been developed to forecast SIC in the Arc-
tic region. These models can be classified into three categories:
physical models, statistical models, and machine learning models.
Examples of physical models include SEAS5 [2] and Sea-ice-ocean-
atmosphere model (ArcIOAM) [3]. However, physics-based models
incurred high computational costs and were susceptible to erratic
forecasts due to physical biases. For instance, values of observed
annual sea ice extent for 8 out of 12 years from 2009 to 2020 de-
viated from the interquartile range of predicted sea ice extent of
physical models submitted to the Sea Ice Prediction Network (SIPN)
[4]. Statistical models such as Vector Autoregression (VAR) [5] and
Bayesian Logistic Regression [6] have also been applied to forecast
the SIC values and the presence or absence of SIC values above
15%. Compared to physical and statistical models, forecast models
based on neural networks and deep learning could address nonlin-
earity in sea ice time series [7] and had less computational costs
once the models are fitted [8]. Previous research works showed
that Long Short-Term Memory (LSTM) outperformed Multi-Layer
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Figure 1: 40th parallel north or the line at 40 degrees north
latitude which was approximately the lowest latitude where
sea ice formed in the Northern Hemisphere

Perceptron (MLP) [9] but LSTM had not presented a significant dif-
ference in predictability compared to Gated Recurrent Unit (GRU)
when they were used to forecast daily SIC [10]. LSTM-based models
were adopted in many sea ice studies. For instance, attention-based
LSTM networks were used in [11] and [12] to make 1-month SIC
forecasts which illustrated that the attention mechanism slightly
reduced short-term forecast errors compared to traditional LSTM.
The main contributions of this paper are two-fold. First, novel
LSTM networks for coordinate-based forecasting and the-entire-
Arctic forecasting are proposed. Unlike the previous works where
future SICs were forecasted by using only the history of SIC [9, 10],
atmospheric and oceanic variables are incorporated as external
predictors. Additionally, the models generate 1-, 3-, 6-, and 9-month
ahead forecasts simultaneously. Second, the performances of the
two LSTM networks with and without external predictors are in-
vestigated to assess the impact of external predictors on forecast
accuracy and arrive at the best-performing forecast model. The
remainder of the paper is organized as follows: Section 2 describes
the dataset used in the modeling and explores their characteris-
tics. Section 3 describes data preprocessing, model construction,
and model training and tuning. Section 4 presents the results and
discussion. Finally, the conclusion is presented in Section 5.

2 DATA SOURCE

SIC and related variables were obtained from ERAS5 [13], a global re-
analysis dataset published by European Centre for Medium-Range
Weather Forecasts (ECMWF). The dataset contains hourly and
monthly atmospheric, oceanic, and land surface climate variables
from satellite observations. Forty-three years of data from the first
launch of the satellite in 1979 to the year 2021 were taken for
the model development. Original values of climate quantities re-
trieved from ERA5 are represented in the form of latitude-longitude
grid projection with a spatial resolution of 30 km X 30 km, which
amounts to 721 X 1440 grid points covering the entire Earth’s sur-
face. Figure 1 shows an example of the sea ice coverage using
cylindrical map projections on the Earth’s surface in March 1979.
Because the Arctic was our focus, only the Earth’s surface above
the 40th parallel north (red line) was selected, corresponding to 210
x 1440 grid points.
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The variables used to develop the forecasting models are sum-
marized in Table 1. The SIC is the model output while the other
four variables are the external predictors, including sea surface tem-
perature (SST), air temperature 2 meters above the surface (T2M),
height above the surface with pressure 500hPa (Z500), and Albedo,
or the proportion of light reflected by the surface (FAL). These ex-
ternal predictors were shown to be related to SIC based on scientific
findings in previous studies [14-16]. Sample time series plots of the
SIC and the predictors at a specific grid cell are depicted in Figure
2. The plots show that all the variables have strong seasonal com-
ponents with a yearly seasonal period. The SIC shows intermittent
periods of zeros during summer months, which poses a significant
challenge in modeling.

3 METHODS

3.1 Data preprocessing and preparation

To reduce computational costs during the model training, the res-
olution of the grid points was scaled down from 30-by-30 km? to
450-by-450 km? so that the number of grid points was reduced to
14 X 96 = 1,344. Since each scaled-down grid point consisted of
225 of 30-by-30 km? grid points, we obtained the values of each
input variable in the scaled-down grid points by averaging 225
values from the original resolution. The SIC data also revealed that
there existed many points with no sea ice, most of which were
points in land and open seawater. Those grid points were excluded
from the modeling, resulting in 810 usable grid points. As LSTM
required normalized inputs, SIC and FAL variables were scaled by
using min-max scaling between -1 and 1 as their range have exact
bounds, whereas SST, T2M, and Z500 variables were scaled by us-
ing variance scaling (standardization) as their range have no exact
bound.

3.2 Proposed LSTM networks

Long Short-term Memory (LSTM) is a type of Recurrent Neural
Network (RNN) designed to learn long-term sequential data. It
was invented by Hochreiter and Schmidhuber [17] to solve the
problem that classical RNNs could not accurately make contextual
predictions from long-term memory due to the vanishing gradient
problem. In this work, two LSTM networks were developed with
different approaches to concurrently forecast SIC at 1-, 3-, 6-, and
9-month forecast horizons. The first network is used to forecast
the SIC of each individual grid point at the time, while the sec-
ond network is used to forecast the SIC of all grid points in the
entire Arctic all at once. The two model network architectures are
described below.

3.2.1 Coordinate-based LSTM Network. The first LSTM network
forecasts SIC for each grid at a time where the grid coordinate must
be supplied as an additional input. As depicted in Figure 3(a), the
model takes two sets of inputs. The first input fed to Input_1 layer
consists of SIC, and optionally predictor variables, including SST,
T2M, Z500, and FAL. The second input fed to Input_2 layer is the
coordinate (latitude and longitude) of the grid point matching the
first input. This second input is concatenated with the output from
LSTM_3 layer before being fed to the dense layer to produce the
SIC forecasts (1-, 3-, 6-, and 9-month forecast horizons). Tuples in
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Table 1: Variables used in SIC forecasting models

Variable Abbreviation Value Range
Sea ice concentration SIC 0.00 - 1.00 %
Sea surface temperature SST 269.37 - 305.05 Kelvin
2m air temperature T2M 221.23 - 310.79 Kelvin
500hPa geopotential height Z500 47370.34 - 58288.11 m%s2
Albedo FAL 0.04-0.87 %
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Figure 2: Sample time series plots of SIC and predictors at a geographic coordinate of 65 degrees north latitude 172.5 degrees

west longitude

each block denote the input and output dimensions of the layers.
The first value in the tuple is the number of time steps to train the
LSTM unit and the second is the number of variables to feed to the
LSTM unit. The quantity n_var is the number of features including
the target variable fed to the model, and n_node is the number of
LSTM units in the hidden layers to be tuned. Each input sample for
the stacked LSTM layer (LSTM_1+LSTM_2+LSTM_3) is made up of
overlapping windows of 12 lags of the five variables. As mentioned
earlier, the input data period is 516 months, from January 1979 to
December 2021. So, the number of input samples per grid point is
516-12-9 = 495, and the total number of input samples from all the
grid points is 810 grid points x 495 samples = 400,950.

322  All-grid LSTM Network. The second LSTM network simulta-
neously predicts SIC values of the entire Arctic Ocean or of all 810
grid points for a specific forecast horizon. Figure 3(b) illustrates the
model architecture. The model takes SIC, and optionally the predic-
tor variables SST, T2M, Z500, and FAL data of all 810 grid points as
the input to the stacked LSTM layer (LSTM_1+LSTM_2+LSTM_3).
The output from the stacked LSTM layer is connected to the dense
layer to produce the SIC forecasts. Each input sample for the stacked
LSTM layer is made up of overlapping windows of 12 lags of the
five variables of all 810 grid points. The total number of samples is
516-12-9 = 495.

3.3 Hyperparameter tuning

The input samples were split into training, validation, and test-
ing with the proportion of 80%, 10%, and 10% respectively. The
hyperparameters were tuned by using the random search strategy
[18] based on the root mean square errors (RMSE). The ranges

of hyperparameters used in the tuning are shown in Table 2. A
list of hyperparameter combinations was randomly generated, and
each combination was evaluated by using growing-window walk-
forward validation [19]. After all hyperparameter combinations in
the list were evaluated, their RMSE scores were ranked to obtain
the best-performing set of hyperparameters.

4 EVALUATION RESULTS AND DISCUSSION

We considered scenarios with and without climate variables as
external predictors, resulting in four models being evaluated. We
refer to the coordinate-based LSTM networks with and without
external predictors as Models M1a and M1b respectively. In other
words, model M1a used only SIC as the input while model M1b uses
SIC, SST, T2M, Z500, and FAL as the inputs. Similarly, the all-grid
LSTM networks with and without external predictors are referred
to as Models M2a and M2b respectively. All four models were tuned
according to the method presented in section 3.3. Both RMSE and
weighted absolute percentage error (WAPE) performance metrics
are reported. A WAPE is a scale-independent forecast accuracy
metric that is appropriate when the output contains zeros or values
near zeros. It is calculated by taking the sum of the absolute errors
and dividing it by the sum of observed values as

i lvie — yiel
Zi,t |yi,t|
where y; ; denotes the observed value of grid point i at time ¢, and

i+ denotes the predicted value of grid point i at time ¢.
Table 3 shows the forecast accuracies of the four models over

the test data (February 2017 - December 2021). In terms of model
complexity, the all-grid models required many more nodes in the

WAPE = X 100
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Input_1: (12, n_vars)
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Input: (12, 810*n_vars)

input: (12, n_var) input: (12, 810*n_var)
LSTM_1 LSTM_1
output: | (12, n_node) output: | (12, n_node)
input: (12, n_node) input: (12, n_node)
LSTM_2 LSTM_2
output: | (12, n_node/2) output: | (12, n_node/2)
input (12, n_node/2) input: (12, n_node/2)
LSTM_3 LSTM_3
output: | (n_node/2) Input_2: (2) output: | (n_node/2)
input: [(n_node/2), (2)] input: (n_node/2)
Concatenate: Dense_1
output: (n_node/2 + 2) output: | (810"4)
input: (n_node/2 + 2)
Dense_1
output: (4)

(a) Coordinate-based LSTM network

(b) All-grid LSTM network

Figure 3: Two proposed LSTM networks for SIC forecasting

Table 2: Hyperparameter ranges used in the model tuning

Hyperparameter

Searching Range

Number of LSTM units in the stacked LSTM layer (n_node)
Number of epochs to train model (n_epoch)

10 - 450 stepping by 5
50 - 500 stepping by 50

Batch size 32, 64, 128, 256
Optimizer ‘adam’, ‘Nadam’
Dropout 0.0 - 0.5 stepping by 0.1
Table 3: Model tuning results and performance
Model LSTM Network Input Variables Tuned Hyperparameters RMSE WAPE
Mila Coordinate-based SIC n_node = 30, n_epoch = 100, batch size = 128, 0.097 10.145%
optimizer = ‘adam’, dropout = 0.0
M1b Coordinate-based SIC, SST, T2M, n_node = 85, n_epoch = 100, batch size = 128, 0.093 9.397%
7500, and FAL optimizer = ‘adam’, dropout = 0.0
M2a All-grid SIC n_node = 300, n_epoch = 300, batch size = 64, 0.074 7.898%
optimizer = ‘adam’, dropout = 0.4
M2b All-grid SIC, SST, T2M, n_node = 380, n_epoch = 300, batch size = 64, 0.080 8.291%
7500, and FAL optimizer = ‘adam’, dropout = 0.1

LSTM layers as well as the number of epochs compared to the
coordinate-based models because the formers were designed to
learn from much larger input data. In addition, the models that
included external predictors (M1b and M2b) required more nodes
compared to the models which used only SIC as the input. A perfor-
mance comparison of the two LSTM networks—coordinate-based
and all-grid —presented an obvious difference. The all-grid LSTM
networks gave more accurate SIC predictions with respect to RMSE
and WAPE. However, the use of additional climate variables did
not improve the forecast accuracies as anticipated, as model M1b

outperformed M1la, but M2b did not outperform M2a. The most
accurate forecasting was obtained from model M2a.

The distributions of forecast errors at the 1-month forecast hori-
zon are shown in Figure 4. The forecast errors of all the models
appear heavy-tail symmetric but slightly right-skewed. The forecast
error distributions of the other remaining forecast horizons are sim-
ilar. While most of the forecast errors were clustered around zeroes,
we found that large forecast errors occurred around the marginal
ice zone (MIZ) over the Arctic subregions, including Beaufort Sea,
Chukchi Sea, and East Siberian Sea. These areas were challenging
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Figure 5: Comparison of WAPEs from different forecast models

for forecasting because they completely melted and stayed in an
ice-free state in all previously reported summers. Moreover, models
Mi1a and M1b underestimated SIC in September 2021, most likely
due to changes in the SIC trends around MIZ after 2010. As models
M1a and M1b aimed to forecast each grid individually without con-
sidering data from the other grids, the drastic change in a specific
grid may confuse the learning. Figure 5(a) illustrates the average
WAPE by months. All four models had a similar pattern of monthly
WAPE:s in which the errors stood very low at the beginning of the
year and peaked in August. They all had trouble forecasting SIC
from midsummer to fall but models M2a and M2b can maintain
WAPE of less than 10% in June and November. From Figure 5(b),
model M2a appears to yield the overall-best forecast accuracies
across all the forecast horizons.

5 CONCLUSION

We proposed two LSTM networks for SIC forecasting in the Arctic
area. The first network was designed to forecast the SIC of each grid
point in a single output with the grid coordinate being supplied as
an additional input, whereas the other was designed to concurrently
forecast SICs of all grid points covering the Arctic in a single output.
Four forecasting models based on coordinate-based and all-grid
LSTM networks were trained using the past data of SIC with and
without incorporating climate variables as external predictors over
the data period of 464 months, and the model hyperparameters
were tuned by using the random search strategy. The evaluation
results revealed that the model based on the all-grid LSTM network
using only the historical SIC data yielded the best performance with
an RMSE of 0.074 and a WAPE of 7.898%. Not only did the model
outperform others, but also required lower computational costs.

However, computational limitations restricted the model deploy-
ment in higher spatial resolution, which lessened the opportunity
that the forecasts would be practically beneficial for stakeholders to
anticipate future SIC trends. Further development of this research is
to be more selective in choosing predictors, which could be done by
performing feature importance analysis. Moreover, SIC time series
in certain sets of grid points show similar patterns, which allows for
clustering grid points and developing separate forecasting models
for different clusters to improve overall forecast accuracies without
incurring too much computational cost in model training.
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